Feedback Linearization Control of the Inertia Wheel Pendulum
نویسنده
چکیده
In this paper, two feedback linearizing control laws for the stabilization of the Inertia Wheel Pendulum are derived: a full-state linearizing controller, generalizing the existing results in literature, with friction ignored in the description and an inputoutput linearizing control law, based on a physically motivated definition of the system output. Experiments are carried out on a laboratory test bed with significant friction in order to test and verify the suggested performance and the results are presented and discussed. The main point to be made as a consequence of the experimental evaluation is the fact that actually the asymptotic stabilization was not achieved, but rather a limit cycling behavior was observed for the full-state linearizing controller. The input-output linearizing controller was able to drive the pendulum to the origin, with the wheel speed settling at a finite value.
منابع مشابه
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملControl of the Underactuated Inertia Wheel Inverted Pendulum for Stable Limit Cycle Generation
This paper deals with a control approach dedicated to stable limit cycle generation for underactuated mechanical systems. The proposed approach is based on partial nonlinear feedback linearization and dynamic control for optimal periodic reference trajectories tracking. The computation of the reference trajectories is performed in order to optimize the behavior of the whole dynamics of the syst...
متن کاملDynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...
متن کاملNonlinear Control Design for Linear Inverted Pendulum System using Exact Feedback Linearization
Exact feedback linearization converts any system into appropriate form such that the controller design becomes convenient for the system. In this technique, control algorithm is developed based on exact feedback linearization through energy control. This approach is applicable to under actuated in which single control input, acceleration of cart, controlled the angle and position of cart. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015